The zebrafish gene map defines ancestral vertebrate chromosomes.
نویسندگان
چکیده
Genetic screens in zebrafish (Danio rerio) have identified mutations that define the roles of hundreds of essential vertebrate genes. Genetic maps can link mutant phenotype with gene sequence by providing candidate genes for mutations and polymorphic genetic markers useful in positional cloning projects. Here we report a zebrafish genetic map comprising 4073 polymorphic markers, with more than twice the number of coding sequences localized in previously reported zebrafish genetic maps. We use this map in comparative studies to identify numerous regions of synteny conserved among the genomes of zebrafish, Tetraodon, and human. In addition, we use our map to analyze gene duplication in the zebrafish and Tetraodon genomes. Current evidence suggests that a whole-genome duplication occurred in the teleost lineage after it split from the tetrapod lineage, and that only a subset of the duplicates have been retained in modern teleost genomes. It has been proposed that differential retention of duplicate genes may have facilitated the isolation of nascent species formed during the vast radiation of teleosts. We find that different duplicated genes have been retained in zebrafish and Tetraodon, although similar numbers of duplicates remain in both genomes. Finally, we use comparative mapping data to address the proposal that the common ancestor of vertebrates had a genome consisting of 12 chromosomes. In a three-way comparison between the genomes of zebrafish, Tetraodon, and human, our analysis delineates the gene content for 11 of these 12 proposed ancestral chromosomes.
منابع مشابه
Using ancestral genome reconstructions to resurrect the duplication history of gene families
Multiple studies have been conducted in the last several years with the goal of understanding the evolution of genomes in the chordate lineage [1]. We used the two most recent ancestral genome reconstruction models by Nakatani et al. [2] and Putnam et al. [3] (therein referred to as “N” and “P” model respectively, see Figure 1 in main text) to clarify how the three rounds of whole genome duplic...
متن کاملAn SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci
A surprising diversity of mechanisms controls sex determination of vertebrate organisms, even among closely related species. Both genetic and temperature-dependent systems of sex determination have been described in teleost fish. In the common zebrafish model organism, heteromorphic sex chromosomes are not observed, and the potential role of a genetic component of sex determination remains larg...
متن کاملThe evolution of the vertebrate Dlx gene family.
The vertebrate Dlx gene family consists of homeobox-containing transcription factors distributed in pairs on the same chromosomes as the Hox genes. To investigate the evolutionary history of Dlx genes, we have cloned five new zebrafish family members and have provided additional sequence information for two mouse genes. Phylogenetic analyses of Dlx gene sequences considered in the context of th...
متن کاملCold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps
Half of all vertebrate species share a series of chromosome fusions that preceded the teleost genome duplication (TGD), but we do not understand the causative evolutionary mechanisms. The "Robertsonian-translocation hypothesis" suggests a regular fusion of each ancestral acro- or telocentric chromosome to just one other by centromere fusions, thus halving the karyotype. An alternative "genome-s...
متن کاملComparative studies of vertebrate aldehyde dehydrogenase 3: sequences, structures, phylogeny and evolution. Evidence for a mammalian origin for the ALDH3A1 gene.
Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2005